
Advanced Computer Programming
[Lecture 06]

Saeed Reza Kheradpisheh

kheradpisheh@ut.ac.ir

Department of Computer Science
Shahid Beheshti University

Spring 1397-98

1



OBJECTS and CLASSES

In an object-oriented program, you don’t simply manipulate numbers
and strings, but you work with objects that are meaningful for your
application. Objects with the same behavior are grouped into classes.
A programmer provides the desired behavior by specifying and
implementing methods for these classes.

2



Object-Oriented Programming

Definition
Object-oriented programming is a programming style in which tasks
are solved by collaborating objects, where objects have their own set
of data, together with a set of methods that act upon the data.

Some objects you’ve used:

String objects to work with strings.

Scanner objects for input operations.

3



Object-Oriented Programming

Definition
Object-oriented programming is a programming style in which tasks
are solved by collaborating objects, where objects have their own set
of data, together with a set of methods that act upon the data.

Some objects you’ve used:

String objects to work with strings.

Scanner objects for input operations.

3



Classes and Objects

Definition
A class describes a set of objects with the same behavior.

Example:

The String class describes the behavior of all strings;
How a string stores its characters.
Which methods can be used with strings (length, substring,
charAt, ...).
How the methods are implemented.

4



Classes and Objects

Definition
A class describes a set of objects with the same behavior.

Example:

The String class describes the behavior of all strings;
How a string stores its characters.
Which methods can be used with strings (length, substring,
charAt, ...).
How the methods are implemented.

4



Classes and Objects

Definition
Every class has a public interface: a collection of methods through
which the objects of the class can be manipulated.

Definition
Encapsulation is the act of providing a public interface and hiding
the implementation details. Encapsulation enables changes in the
implementation without affecting users of a class.

5



Classes and Objects

Definition
Every class has a public interface: a collection of methods through
which the objects of the class can be manipulated.

Definition
Encapsulation is the act of providing a public interface and hiding
the implementation details. Encapsulation enables changes in the
implementation without affecting users of a class.

5



Encapsulation in Real World

You can drive a car by operating the steering wheel and pedals,
without knowing how the engine works. Similarly, you use an object
through its methods. The implementation is hidden.

6



Encapsulation in Real World

A driver of an electric car doesn’t have to learn new controls even
though the car engine is very different. Neither does the programmer
who uses an object with an improved implementation as long as the
same methods are used.

7



Classes Define Types

Recall that:

Type = Size + Operations

When you define a class you should define

The data that its objects use (defining the size of its objects).

The methods with which other objects can interact (defining
operations).

8



Classes Define Types

Recall that:

Type = Size + Operations

When you define a class you should define

The data that its objects use (defining the size of its objects).

The methods with which other objects can interact (defining
operations).

8



Implementing a Simple Class

Tally Counter

9



Implementing a Simple Class

Choosing a name for the class: Counter

Methods (Operations) we need
Increasing by one: count()
See the counter’s value: getValue()

In Java, you use the new operator to construct objects:
Counter tally = new Counter();

In Java, you use the dot operator to access object methods:
tally.count();
tally.count();
int result = tally.getValue(); // Sets result to 2

Specifying how each counter object stores its data: int value
An object stores its data in instance variables.

10



Implementing a Simple Class

Choosing a name for the class: Counter
Methods (Operations) we need

Increasing by one: count()
See the counter’s value: getValue()

In Java, you use the new operator to construct objects:
Counter tally = new Counter();

In Java, you use the dot operator to access object methods:
tally.count();
tally.count();
int result = tally.getValue(); // Sets result to 2

Specifying how each counter object stores its data: int value
An object stores its data in instance variables.

10



Implementing a Simple Class

Choosing a name for the class: Counter
Methods (Operations) we need

Increasing by one: count()
See the counter’s value: getValue()

In Java, you use the new operator to construct objects:
Counter tally = new Counter();

In Java, you use the dot operator to access object methods:
tally.count();
tally.count();
int result = tally.getValue(); // Sets result to 2

Specifying how each counter object stores its data: int value
An object stores its data in instance variables.

10



Implementing a Simple Class

Choosing a name for the class: Counter
Methods (Operations) we need

Increasing by one: count()
See the counter’s value: getValue()

In Java, you use the new operator to construct objects:
Counter tally = new Counter();

In Java, you use the dot operator to access object methods:
tally.count();
tally.count();
int result = tally.getValue(); // Sets result to 2

Specifying how each counter object stores its data: int value
An object stores its data in instance variables.

10



Instance Variables
Definition
An instance variable is a storage location that is present in each
object of the class.

An instance variable declaration consists of the following parts:
A modifier (private)
The type of the instance variable (such as int)
The name of the instance variable (such as value)

11



Instance Variables
Each object of a class has its own set of instance variables. For
example, consider concertCounter and boardingCounter to be
two objects of the Counter class;

12



Instance Methods
Important
An instance method can access the instance variables of the object on
which it acts (different from static methods).

The count method advances the counter value by 1.

The getValue method returns the current value.

Both of the methods work with the instance variable value, the
one belonging to the object on which the method is invoked.

13



The private Access Specifier

Usage
The private specifier restricts access to the methods of the same
class.

A user cannot simply access the instance variables (value for
example). Because they are declared with private access
specifier.

Private instance variables are an essential part of encapsulation.
They allow a programmer to hide the implementation of a class
from a class user.

14



The Public Interface of a Class
Definition
The public interface of a class consists of all methods that a user of
the class may want to apply to its objects.

When designing a class, you start by specifying its public interface.
For example we want the following methods on a cash register object:

Add the price of an item.
Get the total amount owed, and the count of items purchased.
Clear the cash register to start a new sale.

15



The Public Interface of a Class
Definition
The public interface of a class consists of all methods that a user of
the class may want to apply to its objects.

When designing a class, you start by specifying its public interface.
For example we want the following methods on a cash register object:

Add the price of an item.
Get the total amount owed, and the count of items purchased.
Clear the cash register to start a new sale.

15



The Public Interface of a Class
Implementation v.s. Interface
The method declarations and comments make up the public
interface of the class. The data and the method bodies make up the
private implementation of the class.

16



Object Reference

When you create an object of a class using the new operator, it creates
that object somewhere in the memory and return a reference to it.
For example:
CashRegister register1 = new CashRegister();

17



Mutators and Accessors

Instance methods of the public interface can be classified into two
categories:

Mutator method: modifies the object on which it operates.
tally.count();

Accessor method: queries the object for some information
without changing it.
tally.getValue();

18



Mutators and Accessors

Instance methods of the public interface can be classified into two
categories:

Mutator method: modifies the object on which it operates.
tally.count();

Accessor method: queries the object for some information
without changing it.
tally.getValue();

18



Designing the Data Representation

When implementing a class, you have to determine which data each
object needs to store.

Go through all methods and consider their data requirements
(start with the accessor methods).

You should choose to compute or to store data.

Back to cash register example, we choose to store data for number of
items and total price:

19



Designing the Data Representation

When implementing a class, you have to determine which data each
object needs to store.

Go through all methods and consider their data requirements
(start with the accessor methods).

You should choose to compute or to store data.

Back to cash register example, we choose to store data for number of
items and total price:

19



Implementing Instance Methods

When implementing a class, you need to provide the bodies for all
methods.

20



Implicit and Explicit Parameters
Definition
The object on which a method is invoked is called the implicit
parameter of the method.

Definition
parameters that are explicitly mentioned in the method declaration, are
called explicit parameters.

21



Constructors
Usage
A constructor initializes the instance variables of an object. The
constructor is automatically called whenever an object is created with
the new operator.

The name of a constructor is identical to the name of its class.
Constructors never return values.

22



Constructors
A class can have multiple constructors. This allows you to declare
objects in different ways.

When you construct an object, the compiler chooses the constructor
that matches the arguments that you supply.

23



Constructors

If you do not initialize an instance variable in a constructor, it is
automatically set to a default value:

Numbers are set to zero.

Boolean variables are initialized as false.

Object and array references are set to the special value null that
indicates that no object is associated with the variable.
Don’t forget to initialize object references in a constructor.

If you do not provide a constructor, a constructor with no arguments is
generated.

24



Example

25



Method Overloading

Definition
When the same method name is used for more than one method, then
the name is overloaded.

In Java you can overload method names provided that the parameters
are different (in their types or count). Consider the following methods:

public int add(int a)
returns a + 1.

public int add(int a, int b)
returns a + b.

public string add(string a, string b)
returns a + b.

When you call an overloaded method, the compiler chooses the one
that matches the arguments that you supply.

26



Method Overloading

Definition
When the same method name is used for more than one method, then
the name is overloaded.

In Java you can overload method names provided that the parameters
are different (in their types or count). Consider the following methods:

public int add(int a)
returns a + 1.

public int add(int a, int b)
returns a + b.

public string add(string a, string b)
returns a + b.

When you call an overloaded method, the compiler chooses the one
that matches the arguments that you supply.

26



Testing a Class

Definition
A unit test verifies that a class works correctly in isolation, outside a
complete program.

You can write a tester class, which is a class with a main method that
contains statements to run methods of another class. A tester class
typically carries out the following steps:

Construct one or more objects of the class that is being tested.

Invoke one or more methods.

Print out one or more results.

Print the expected results.

27



Testing a Class: Example

28



Testing a Class: Example

To produce a program, you need to combine the CashRegister and
CashRegisterTester classes.

1 Make a new subfolder for your program.
2 Make two files, one for each class.
3 Compile both files.
4 Run the test program.

29



Implementing a Class: Guidlines

1 Get an informal list of the responsibilities of your objects.
2 Specify the public interface.
3 Document the public interface.
4 Determine instance variables.
5 Implement constructors and methods.
6 Test your class.

30



Exercise (Tally.java)
Implement the tally counter class.

31



Patterns for Object Data
Keeping a Total
An instance variable for the total is updated in methods that
increase or decrease the total amount.

Counting Events
A counter that counts events is incremented in methods that
correspond to the events.
Collecting Values
An object can collect other objects in an array or array list.
Managing Properties of an Object
An object property can be accessed with a getter method and
changed with a setter method.
Modeling Objects with Distinct States
If your object can have one of several states that affect the
behavior, supply an instance variable for the current state.
Describing the Position of an Object
To model a moving object, you need to store and update its
position.

32



Patterns for Object Data
Keeping a Total
An instance variable for the total is updated in methods that
increase or decrease the total amount.
Counting Events
A counter that counts events is incremented in methods that
correspond to the events.

Collecting Values
An object can collect other objects in an array or array list.
Managing Properties of an Object
An object property can be accessed with a getter method and
changed with a setter method.
Modeling Objects with Distinct States
If your object can have one of several states that affect the
behavior, supply an instance variable for the current state.
Describing the Position of an Object
To model a moving object, you need to store and update its
position.

32



Patterns for Object Data
Keeping a Total
An instance variable for the total is updated in methods that
increase or decrease the total amount.
Counting Events
A counter that counts events is incremented in methods that
correspond to the events.
Collecting Values
An object can collect other objects in an array or array list.

Managing Properties of an Object
An object property can be accessed with a getter method and
changed with a setter method.
Modeling Objects with Distinct States
If your object can have one of several states that affect the
behavior, supply an instance variable for the current state.
Describing the Position of an Object
To model a moving object, you need to store and update its
position.

32



Patterns for Object Data
Keeping a Total
An instance variable for the total is updated in methods that
increase or decrease the total amount.
Counting Events
A counter that counts events is incremented in methods that
correspond to the events.
Collecting Values
An object can collect other objects in an array or array list.
Managing Properties of an Object
An object property can be accessed with a getter method and
changed with a setter method.

Modeling Objects with Distinct States
If your object can have one of several states that affect the
behavior, supply an instance variable for the current state.
Describing the Position of an Object
To model a moving object, you need to store and update its
position.

32



Patterns for Object Data
Keeping a Total
An instance variable for the total is updated in methods that
increase or decrease the total amount.
Counting Events
A counter that counts events is incremented in methods that
correspond to the events.
Collecting Values
An object can collect other objects in an array or array list.
Managing Properties of an Object
An object property can be accessed with a getter method and
changed with a setter method.
Modeling Objects with Distinct States
If your object can have one of several states that affect the
behavior, supply an instance variable for the current state.

Describing the Position of an Object
To model a moving object, you need to store and update its
position.

32



Patterns for Object Data
Keeping a Total
An instance variable for the total is updated in methods that
increase or decrease the total amount.
Counting Events
A counter that counts events is incremented in methods that
correspond to the events.
Collecting Values
An object can collect other objects in an array or array list.
Managing Properties of an Object
An object property can be accessed with a getter method and
changed with a setter method.
Modeling Objects with Distinct States
If your object can have one of several states that affect the
behavior, supply an instance variable for the current state.
Describing the Position of an Object
To model a moving object, you need to store and update its
position. 32



The this Reference

Usage
In an instance method, the this reference refers to the implicit
parameter.

You don’t usually need to use the this reference, but you can.

33



Static Variables and Methods

Usage
A static variable belongs to the class, not to any object of the
class.

Usage
A static method is not invoked on an object.

In static methods, you have no access to this reference.

To use static variables or methods, you should use the dot
operator in front of the class name instead of the object reference
(remember the Math class).

34


